问答(QA)在回答定制域中的问题方面表现出了令人印象深刻的进展。然而,域的适应性仍然是质量检查系统最难以捉摸的挑战之一,尤其是当质量检查系统在源域中训练但部署在不同的目标域中时。在这项工作中,我们调查了问题分类对质量检查域适应的潜在好处。我们提出了一个新颖的框架:问题回答的问题分类(QC4QA)。具体而言,采用问题分类器将问题类分配给源数据和目标数据。然后,我们通过伪标记以自我监督的方式进行联合培训。为了优化,源和目标域之间的域间差异通过最大平均差异(MMD)距离降低。我们还最大程度地减少了同一问题类别的质量质量适应性表现的QA样本中的类内部差异。据我们所知,这是质量检查域适应中的第一部作品,以通过自我监督的适应来利用问题分类。我们证明了拟议的QC4QA的有效性,并在多个数据集上针对最先进的基线进行了一致的改进。
translated by 谷歌翻译
尽管最近在改善错误信息检测系统的性能方面取得了进展,但在看不见的领域中进行错误信息进行分类仍然是一个难以捉摸的挑战。为了解决这个问题,一种常见的方法是引入域名评论家并鼓励域不变的输入功能。但是,早期的错误信息通常证明了针对现有的错误信息数据(例如,COVID-19数据集中的类不平衡)的条件和标签转移,这使得这种方法在检测早期错误信息方面的有效性较小。在本文中,我们提出了早期错误信息检测(CANMD)的对比适应网络。具体而言,我们利用伪标签来生成高信心的目标示例,用于与源数据的联合培训。我们还设计了标签校正成分,以估算和校正源和目标域之间的标签移动(即类先验)。此外,对比度适应损失已集成在目标函数中,以减少类内部差异并扩大阶层间差异。因此,改编的模型学习了校正的类先验和两个域之间不变的条件分布,以改善目标数据分布的估计。为了证明所提出的CANMD的有效性,我们研究了Covid-19的早期错误信息检测的案例,并使用多个现实世界数据集进行了广泛的实验。结果表明,与最先进的基线相比,CANMD可以有效地将错误信息检测系统适应不见的Covid-19目标域,并有显着改进。
translated by 谷歌翻译
产品图像对于在电子商务平台中提供理想的用户体验至关重要。对于拥有数十亿种产品的平台,手动挑选和组织合格的图像非常耗时且耗尽劳动力。此外,要生成/选择的产品图像需要遵守众多且复杂的图像规则。为了解决这些挑战,在本文中,我们提出了一个新的学习框架,以便在电子商务中自动生成产品图像序列(AGPI)。为此,我们提出了一个多模式统一的图像序列分类器(MUISC),该分类器能够通过学习同时检测所有规则违规的类别。 MUISC利用文本审查反馈作为额外的培训目标,并利用产品文本描述提供额外的语义信息。根据离线评估,我们表明拟议的MUISC显着优于各种基线。除MUISC外,我们还将其他一些重要的模块集成在提出的框架中,例如主图像选择,不合格的内容检测和图像重复数据删除。借助所有这些模块,我们的框架在JD.com推荐平台中有效,有效地工作。到2021年12月,我们的AGPIS框架为约150万种产品生成了高标准图像,并获得了13.6%的拒绝率。
translated by 谷歌翻译
图形神经网络(GNN)在解决图形结构数据(即网络)方面的各种分析任务方面已广受欢迎。典型的gnns及其变体遵循一种消息的方式,该方式通过网络拓扑沿网络拓扑的特征传播过程获得网络表示,然而,它们忽略了许多现实世界网络中存在的丰富文本语义(例如,局部单词序列)。现有的文本丰富网络方法通过主要利用内部信息(例如主题或短语/单词)来整合文本语义,这些信息通常无法全面地挖掘文本语义,从而限制了网络结构和文本语义之间的相互指导。为了解决这些问题,我们提出了一个具有外部知识(TEKO)的新型文本富裕的图形神经网络,以充分利用文本丰富的网络中的结构和文本信息。具体而言,我们首先提出一个灵活的异质语义网络,该网络结合了文档和实体之间的高质量实体和互动。然后,我们介绍两种类型的外部知识,即结构化的三胞胎和非结构化实体描述,以更深入地了解文本语义。我们进一步为构建的异质语义网络设计了互惠卷积机制,使网络结构和文本语义能够相互协作并学习高级网络表示。在四个公共文本丰富的网络以及一个大规模的电子商务搜索数据集上进行了广泛的实验结果,这说明了Teko优于最先进的基线。
translated by 谷歌翻译
我们提出了一种新的域特定的生成预训练(DS-GPT)方法,用于文本生成,并将其应用于电子商务移动显示器上的产品Titleand审查总结问题。首先,我们采用了仅限解码器的变压器体系结构,该架构Fitswell通过组合输入和输出全部携带的微调任务。其次,我们在相关域中仅使用少量预训练数据是强大的。预先训练从一般语料库中的矛盾,如维基百科或通用需要巨大的时间和资源承诺,如果下游任务有限。 OUDSGPT在Limble DataSet中预先培训,中文短篇演示数据集(LCSTS)。第三,我们的模型不要求相关的人类标记数据。对于标题摘要任务,艺术状态明确地使用额外的背景知识训练和预测阶段。相比之下,我们的模型暗示 - 在公共Taobao.comDataset上微调后,旨在捕获这种知识并实现了重要的改进其他方法。对于审查摘要任务,我们利用JD.com在-UteedAtaset上,并观察到缺乏微调灵活性的标准机械进程方法的类似改进。我们的工作可以简单地扩展到其他文本生成任务的域。
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
In robust Markov decision processes (MDPs), the uncertainty in the transition kernel is addressed by finding a policy that optimizes the worst-case performance over an uncertainty set of MDPs. While much of the literature has focused on discounted MDPs, robust average-reward MDPs remain largely unexplored. In this paper, we focus on robust average-reward MDPs, where the goal is to find a policy that optimizes the worst-case average reward over an uncertainty set. We first take an approach that approximates average-reward MDPs using discounted MDPs. We prove that the robust discounted value function converges to the robust average-reward as the discount factor $\gamma$ goes to $1$, and moreover, when $\gamma$ is large, any optimal policy of the robust discounted MDP is also an optimal policy of the robust average-reward. We further design a robust dynamic programming approach, and theoretically characterize its convergence to the optimum. Then, we investigate robust average-reward MDPs directly without using discounted MDPs as an intermediate step. We derive the robust Bellman equation for robust average-reward MDPs, prove that the optimal policy can be derived from its solution, and further design a robust relative value iteration algorithm that provably finds its solution, or equivalently, the optimal robust policy.
translated by 谷歌翻译
Existing federated classification algorithms typically assume the local annotations at every client cover the same set of classes. In this paper, we aim to lift such an assumption and focus on a more general yet practical non-IID setting where every client can work on non-identical and even disjoint sets of classes (i.e., client-exclusive classes), and the clients have a common goal which is to build a global classification model to identify the union of these classes. Such heterogeneity in client class sets poses a new challenge: how to ensure different clients are operating in the same latent space so as to avoid the drift after aggregation? We observe that the classes can be described in natural languages (i.e., class names) and these names are typically safe to share with all parties. Thus, we formulate the classification problem as a matching process between data representations and class representations and break the classification model into a data encoder and a label encoder. We leverage the natural-language class names as the common ground to anchor the class representations in the label encoder. In each iteration, the label encoder updates the class representations and regulates the data representations through matching. We further use the updated class representations at each round to annotate data samples for locally-unaware classes according to similarity and distill knowledge to local models. Extensive experiments on four real-world datasets show that the proposed method can outperform various classical and state-of-the-art federated learning methods designed for learning with non-IID data.
translated by 谷歌翻译
Existing measures and representations for trajectories have two longstanding fundamental shortcomings, i.e., they are computationally expensive and they can not guarantee the `uniqueness' property of a distance function: dist(X,Y) = 0 if and only if X=Y, where $X$ and $Y$ are two trajectories. This paper proposes a simple yet powerful way to represent trajectories and measure the similarity between two trajectories using a distributional kernel to address these shortcomings. It is a principled approach based on kernel mean embedding which has a strong theoretical underpinning. It has three distinctive features in comparison with existing approaches. (1) A distributional kernel is used for the very first time for trajectory representation and similarity measurement. (2) It does not rely on point-to-point distances which are used in most existing distances for trajectories. (3) It requires no learning, unlike existing learning and deep learning approaches. We show the generality of this new approach in three applications: (a) trajectory anomaly detection, (b) anomalous sub-trajectory detection, and (c) trajectory pattern mining. We identify that the distributional kernel has (i) a unique data-dependent property and the above uniqueness property which are the key factors that lead to its superior task-specific performance; and (ii) runtime orders of magnitude faster than existing distance measures.
translated by 谷歌翻译